Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Plant Sci ; 15: 1386225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584944

RESUMO

Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.

3.
Plants (Basel) ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903939

RESUMO

Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, the responses of genotypes to drought were evaluated on 1103P and 101-14MGt plants, own-rooted and grafted with Cabernet Sauvignon, in three different water deficit conditions (80, 50, and 20% soil water content, SWC). Gas exchange parameters, stem water potential, root and leaf ABA content, and root and leaf transcriptomic response were investigated. Under well-watered conditions, gas exchange and stem water potential were mainly affected by the grafting condition, whereas under sever water deficit they were affected by the rootstock genotype. Under severe stress conditions (20% SWC), 1103P showed an "avoidance" behavior. It reduced stomatal conductance, inhibited photosynthesis, increased ABA content in the roots, and closed the stomata. The 101-14MGt maintained a high photosynthetic rate, limiting the reduction of soil water potential. This behavior results in a "tolerance" strategy. An analysis of the transcriptome showed that most of the differentially expressed genes were detected at 20% SWC, and more significantly in roots than in leaves. A core set of genes has been highlighted on the roots as being related to the root response to drought that are not affected by genotype nor grafting. Genes specifically regulated by grafting and genes specifically regulated by genotype under drought conditions have been identified as well. The 1103P, more than the 101-14MGt, regulated a high number of genes in both own-rooted and grafted conditions. This different regulation revealed that 1103P rootstock readily perceived the water scarcity and rapidly faced the stress, in agreement with its avoidance strategy.

4.
Science ; 379(6635): 892-901, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862793

RESUMO

We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.


Assuntos
Evolução Biológica , Domesticação , Vitis , Humanos , Agricultura , Ásia Ocidental , Ecótipo , Fenótipo , Vitis/genética , Aclimatação
5.
Plants (Basel) ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36840092

RESUMO

Common bean cultivation has historically been a typical component of rural economies in Italy, particularly in mountainous and hilly zones along the Apennine ridge of the central and southern regions, where the production is focused on local landraces cultivated by small-scale farmers using low-input production systems. Such landraces are at risk of genetic erosion because of the recent socioeconomic changes in rural communities. One hundred fourteen accessions belonging to 66 landraces still being grown in the Lazio region were characterized using a multidisciplinary approach. This approach included morphological (seed traits), biochemical (phaseolin and phytohemagglutinin patterns), and molecular (microsatellite loci) analyses to investigate their genetic variation, structure, and distinctiveness, which will be essential for the implementation of adequate ex situ and in situ conservation strategies. Another objective of this study was to determine the original gene pool (Andean and Mesoamerican) of the investigated landraces and to evaluate the cross-hybridization events between the two ancestral gene pools in the P. vulgaris germplasm in the Lazio region. Molecular analyses on 456 samples (four for each of the 114 accessions) revealed that the P. vulgaris germplasm in the Lazio region exhibited a high level of genetic diversity (He = 0.622) and that the Mesoamerican and Andean gene pools were clearly differentiated, with the Andean gene pool prevailing (77%) and 12% of landraces representing putative hybrids between the two gene pools. A model-based cluster analysis based on the molecular markers highlighted three main groups in agreement with the phaseolin patterns and growth habit of landraces. The combined utilisation of morphological, biochemical, and molecular data allowed for the differentiation of all landraces and the resolution of certain instances of homonymy and synonymy. Furthermore, although a high level of homozygosity was found across all landraces, 32 of the 66 examined (49%) exhibited genetic variability, indicating that the analysis based on a single or few plants per landrace, as usually carried out, may provide incomplete information.

6.
Plants (Basel) ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678977

RESUMO

Downy mildew, caused by the obligate parasite Plasmopara viticola, is one of the most important threats to viticulture. The exploitation of resistant and susceptibility traits of grapevine is one of the most promising ways to increase the sustainability of disease management. Nitrogen (N) fertilization is known for influencing disease severity in the open field, but no information is available on its effect on plant-pathogen interaction. A previous RNAseq study showed that several genes of N metabolism are differentially regulated in grapevine upon P. viticola inoculation, and could be involved in susceptibility or resistance to the pathogen. The aim of this study was to evaluate if N fertilization influences: (i) the foliar leaf content and photosynthetic activity of the plant, (ii) P. viticola infectivity, and (iii) the expression of the candidate susceptibility/resistance genes. Results showed that N level positively correlated with P. viticola infectivity, confirming that particular attention should be taken in vineyard to the fertilization, but did not influence the expression of the candidate genes. Therefore, these genes are manipulated by the pathogen and can be exploited for developing new, environmentally friendly disease management tools, such as dsRNAs, to silence the susceptibility genes or breeding for resistance.

8.
Foods ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829050

RESUMO

The effects of global warming on plants are not limited to the exacerbation of summer stresses; they could also induce dormancy dysfunctions. In January 2020, a bud break was observed in an old poly-varietal vineyard. Meteorological data elaboration of the 1951-2020 period confirmed the general climatic warming of the area and highlighted the particular high temperatures of the last winter. Phenological records appeared to be significantly correlated to wood hydration and starch reserve consumption, demonstrating a systemic response of the plant to the warm conditions. The eight cultivars, identified by single-nucleotide polymorphism (SNP) profiles and ampelographic description, grown in this vineyard showed different behaviors. Among them, the neglected Sprino, Baresana, Bianco Palmento, and Uva Gerusalemme, as well as the interspecific hybrid Seyve Villard 12.375, appeared to be the most interesting. Among the adaptation strategies to climate changes, the cultivar selection should be considered a priority, as it reduces the inputs required for the plant management over the entire life cycle of the vineyard. Hot Mediterranean areas, such as Salento, are a battlefront against the climate change impacts, and, thus, they represent a precious source of biodiversity for viticulture.

9.
Front Plant Sci ; 12: 692661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434204

RESUMO

The domestication and spreading of grapevine as well as the gene flow history had been described in many studies. We used a high-quality 7k SNP dataset of 1,038 Eurasian grape varieties with unique profiles to assess the population genetic diversity, structure, and relatedness, and to infer the most likely migration events. Comparisons of putative scenarios of gene flow throughout Europe from Caucasus helped to fit the more reliable migration routes around the Mediterranean Basin. Approximate Bayesian computation (ABC) approach made possible to provide a response to several questions so far remaining unsolved. Firstly, the assessment of genetic diversity and population structure within a well-covered dataset of ancient Italian varieties suggested the different histories between the Northern and Southern Italian grapevines. Moreover, Italian genotypes were shown to be distinguishable from all the other Eurasian populations for the first time. The entire Eurasian panel confirmed the east-to-west gene flow, highlighting the Greek role as a "bridge" between the Western and Eastern Eurasia. Portuguese germplasm showed a greater proximity to French varieties than the Spanish ones, thus being the main route for gene flow from Iberian Peninsula to Central Europe. Our findings reconciled genetic and archaeological data for one of the most cultivated and fascinating crops in the world.

10.
Front Plant Sci ; 12: 667319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34127927

RESUMO

Downy mildew, caused by the oomycete Plasmopara viticola, is one of the diseases causing the most severe economic losses to grapevine (Vitis vinifera) production. To date, the application of fungicides is the most efficient method to control the pathogen and the implementation of novel and sustainable disease control methods is a major challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great potential for controlling fungal pathogens. Recently, a candidate susceptibility gene (VviLBDIf7) to downy mildew has been identified in V. vinifera. In this work, the efficacy of RNAi triggered by exogenous double-stranded RNA (dsRNA) in controlling P. viticola infections has been assessed in a highly susceptible grapevine cultivar (Pinot noir) by knocking down VviLBDIf7 gene. The effects of dsRNA treatment on this target gene were assessed by evaluating gene expression, disease severity, and development of vegetative and reproductive structures of P. viticola in the leaf tissues. Furthermore, the effects of dsRNA treatment on off-target (EF1α, GAPDH, PEPC, and PEPCK) and jasmonic acid metabolism (COI1) genes have been evaluated. Exogenous application of dsRNA led to significant reductions both in VviLBDIf7 gene expression, 5 days after the treatment, and in the disease severity when artificial inoculation was carried out 7 days after dsRNA treatments. The pathogen showed clear alterations to both vegetative (hyphae and haustoria) and reproductive structures (sporangiophores) that resulted in stunted growth and reduced sporulation. Treatment with dsRNA showed signatures of systemic activity and no deleterious off-target effects. These results demonstrated the potential of RNAi for silencing susceptibility factors in grapevine as a sustainable strategy for pathogen control, underlying the possibility to adopt this promising biotechnological tool in disease management strategies.

11.
Plant Biotechnol J ; 19(8): 1495-1510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945200

RESUMO

Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.


Assuntos
Proteção de Cultivos , Melhoramento Vegetal , Produtos Agrícolas/genética , Edição de Genes , Plantas Geneticamente Modificadas/genética
12.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926017

RESUMO

Domestication is a process of selection driven by humans, transforming wild progenitors into domesticated crops. The grapevine (Vitis vinifera L.), besides being one of the most extensively cultivated fruit trees in the world, is also a fascinating subject for evolutionary studies. The domestication process started in the Near East and the varieties obtained were successively spread and cultivated in different areas. Whether the domestication occurred only once, or whether successive domestication events occurred independently, is a highly debated mystery. Moreover, introgression events, breeding and intense trade in the Mediterranean basin have followed, in the last thousands of years, obfuscating the genetic relationships. Although a succession of studies has been carried out to explore grapevine origin and different evolution models are proposed, an overview of the topic remains pending. We review here the findings obtained in the main phylogenetic and genomic studies proposed in the last two decades, to clarify the fundamental questions regarding where, when and how many times grapevine domestication took place. Finally, we argue that the realization of the pan-genome of grapes could be a useful resource to discover and track the changes which have occurred in the genomes and to improve our understanding about the domestication.


Assuntos
Domesticação , Vitis/genética , Vitis/metabolismo , Produtos Agrícolas/genética , Frutas , Genômica , Humanos , Filogenia , Melhoramento Vegetal/métodos
13.
Front Plant Sci ; 12: 630122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613611

RESUMO

Grapevine (Vitis vinifera) is one of the most widely cultivated plant species of agricultural interest, and is extensively appreciated for its fruits and the wines made from its fruits. Considering the high socio-economic impact of the wine sector all over the world, in recent years, there has been an increase in work aiming to investigate the biodiversity of grapevine germplasm available for breeding programs. Various studies have shed light on the genetic diversity characterizing the germplasm from the cradle of V. vinifera domestication in Georgia (South Caucasus). Georgian germplasm is placed in a distinct cluster from the European one and possesses a rich diversity for many different traits, including eno-carpological and phenological traits; resistance to pathogens, such as oomycetes and phytoplasmas; resistance to abiotic stresses, such as sunburn. The aim of this review is to assess the potential of Georgian cultivars as a source of useful traits for breeding programs. The unique genetic and phenotypic aspects of Georgian germplasm were unraveled, to better understand the diversity and quality of the genetic resources available to viticulturists, as valuable resources for the coming climate change scenario.

14.
Plant Physiol Biochem ; 160: 294-305, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33540332

RESUMO

The discovery of new mechanisms of resistance and natural bioactive molecules could be two of the possible ways to reduce fungicide use in vineyard and assure an acceptable and sustainable protection against Plasmopara viticola, the grapevine downy mildew agent. Emission of volatile organic compounds (VOCs), such as terpenes, norisoprenoids, alcohols and aldehydes, is frequently induced in plants in response to attack by pathogens, such as P. viticola, that is known to cause a VOCs increment in cultivars harboring American resistance traits. In this study, the role of leaf VOCs in the resistance mechanism of two resistant cultivars (Mgaloblishvili, a pure Vitis vinifera cultivar, and Bianca, an interspecific hybrid) and the direct antimicrobial activity of four selected VOCs have been investigated. The leaf VOCs profiles, analyzed through solid-phase microextraction gas chromatography-mass spectrometry analysis, as well as the expression of six terpene synthases (TPSs), were determined upon pathogen inoculation. In both cultivars, the expression pattern of six TPSs increased soon after pathogen inoculation and an increment of nine VOCs has been detected. While in Mgaloblishvili VOCs were synthesized early after P. viticola inoculation, they constituted a late response to pathogen in Bianca. All the four terpenes (farnesene, nerolidol, ocimene and valencene), chosen according to the VOC profiles and gene expression analysis, caused a significant reduction (53-100%) in P. viticola sporulation. These results support the role of VOCs into defense mechanisms of both cultivars and suggest their potential role as a natural and eco-friendly solution to protect grapevine from P. viticola.


Assuntos
Resistência à Doença , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Vitis/química , Compostos Orgânicos Voláteis/química , Fungicidas Industriais/química , Regulação da Expressão Gênica de Plantas , Vitis/microbiologia
15.
Mycoses ; 64(5): 528-536, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33438319

RESUMO

BACKGROUND: A wide range of frequency of azole-resistance in A fumigatus in different patient populations worldwide was observed threatening to reduce therapeutic options. OBJECTIVES: Estimate the prevalence of azole-resistance, investigate the molecular mechanisms of resistance, compare the genotypes of resistant clinical isolates with those from the surrounding environment. METHODS: Aspergillus isolates were collected by seven Italian hospital microbiology laboratories. Strains were isolated from different clinical samples from unselected patients. The azole-resistance was evaluated using screening test and microdilution EUCAST method. The molecular mechanism of resistance was performed sequencing the cyp51A gene. Resistant isolates were genotyped by microsatellite analysis and their profiles compared with those of azole-resistant isolates from previous Italian studies. RESULTS: 425 Aspergillus isolates from 367 patients were analysed. The azole-resistance rates were 4.9% and 6.6% considering all Aspergillus spp. isolates and the A fumigatus sensu stricto, respectively. All resistant isolates except one were from a single hospital. Two rare azole-resistant species were identified: A thermomutatus and A lentulus. The predominant resistance mechanism was TR34 /L98H. No correlation between the clinical resistant strains and environmental isolates from patients' home/work/ward was observed. The analysis of the molecular correlation between the resistant clinical strains collected in the present study and those of environmental and clinical origin collected in previous Italian studies reveals a progressive diversification of azole-resistant genotypes starting from a founder azole-resistant genotype. CONCLUSIONS: This study confirms the trend of azole-resistance rate in Italy, showing a geographical difference. Data reinforce the importance of surveillance programmes to monitor the local epidemiological situation.


Assuntos
Aspergilose , Aspergillus/isolamento & purificação , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/genética , Microbiologia Ambiental , Proteínas Fúngicas/genética , Genes Fúngicos , Genótipo , Humanos , Lactente , Itália/epidemiologia , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Mutação , Prevalência , Estudos Prospectivos
16.
Front Plant Sci ; 11: 562432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163011

RESUMO

Plasmopara viticola (Berk. et Curt.) Berl. and de Toni, the agent of downy mildew, is one of the most important pathogens of European grapevine (Vitis vinifera L.). Extensive evaluation of cultivated grapevine germplasm has highlighted the existence of resistant phenotypes in the Georgian (Southern Caucasus) germplasm. Resistance is shown as a reduction in disease severity. Unraveling the genetic architecture of grapevine response to P. viticola infection is crucial to develop resistant varieties and reduce the impact of disease management. The aim of this work was to apply a genome-wide association (GWA) approach to a panel of Georgian-derived accessions phenotyped for P. viticola susceptibility and genotyped with Vitis18kSNP chip array. GWA identified three highly significant novel loci on chromosomes 14 (Rpv29), 3 (Rpv30) and 16 (Rpv31) associated with a low level of pathogen sporulation. Rpv29, Rpv30, and Rpv31 loci appeared to be associated with plant defense genes against biotic stresses, such as genes involved in pathogen recognition and signal transduction. This study provides the first evidence of resistant loci against P. viticola in V. vinifera germplasm, and identifies potential target genes for breeding P. viticola resistant grapevine cultivars.

18.
Genes (Basel) ; 11(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121150

RESUMO

Mgaloblishvili, a Vitis vinifera cultivar, exhibits unique resistance traits against Plasmopara viticola, the downy mildew agent. This offers the unique opportunity of exploring the molecular responses in compatible and incompatible plant-pathogen interaction. In this study, whole transcriptomes of Mgaloblishvili, Pinot noir (a V. vinifera susceptible cultivar), and Bianca (a resistant hybrid) leaves, inoculated and non-inoculated with the pathogen, were used to identify P. viticola effector-encoding genes and plant susceptibility/resistance genes. Multiple effector-encoding genes were identified in P. viticola transcriptome, with remarkable expression differences in relation to the inoculated grapevine cultivar. Intriguingly, five apoplastic effectors specifically associated with resistance in V. vinifera. Gene coexpression network analysis identified specific modules and metabolic changes occurring during infection in the three grapevine cultivars. Analysis of these data allowed, for the first time, the detection in V. vinifera of a putative P. viticola susceptibility gene, encoding a LOB domain-containing protein. Finally, the de novo assembly of Mgaloblishvili, Pinot noir, and Bianca transcriptomes and their comparison highlighted novel candidate genes that might be at the basis of the resistant phenotype. These results open the way to functional analysis studies and to new perspectives in molecular breeding of grapevine for resistance to P. viticola.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Transcriptoma/genética , Vitis/genética , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Oomicetos/genética , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Análise de Sequência de RNA , Vitis/crescimento & desenvolvimento , Vitis/microbiologia
19.
BMC Plant Biol ; 19(1): 7, 2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30612542

RESUMO

BACKGROUND: Magna Graecia is the ancient name for the modern geopolitical region of South Italy extensively populated by Greek colonizers, shown by archeological and historical evidence to be the oldest wine growing region of Italy, crucial for the spread of specialized viticulture around Mediterranean shores. Here, the genetic diversity of Magna Graecia grape germplasm was assessed and its role in grapevine propagation around the Mediterranean basin was underlined. RESULTS: A large collection of grapevines from Magna Graecia was compared with germplasm from Georgia to the Iberian Peninsula using the 18 K SNP array. A high level of genetic diversity of the analyzed germplasm was determined; clustering, structure analysis and DAPC (Discriminant Analysis of Principal Components) highlighted the genetic relationships among genotypes from South Italy and the Eastern Mediterranean (Greece). Gene flow from east (Georgia) to west (Iberian Peninsula) was identified throughout the large number of detected admixed samples. Pedigree analysis showed a complex and well-structured network of first degree relationships, where the cultivars from Magna Graecia were mainly involved. CONCLUSIONS: This study provided evidence that Magna Graecia germplasm was shaped by historical events that occurred in the area due to the robust link between South Italian and Greek genotypes, as well as, by the availability of different thermal resources for cultivars growing in such different winegrowing areas. The uniqueness of this ampelographic platform was mainly an outcome of complex natural or human-driven crosses involving elite cultivars.


Assuntos
Variação Genética/genética , Polimorfismo de Nucleotídeo Único/genética , Vitis/genética , Produção Agrícola/história , DNA de Plantas/genética , Genótipo , Técnicas de Genotipagem , República da Geórgia , Grécia , História Antiga , Itália , Região do Mediterrâneo , Linhagem , Espanha
20.
Sci Rep ; 8(1): 12523, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131589

RESUMO

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. The cultivation of resistant V. vinifera varieties would be a sustainable way to reduce the damage caused by the pathogen and the impact of disease management, which involves the economic, health and environmental costs of frequent fungicide application. We report the finding of unique downy mildew resistance traits in a winemaking cultivar from the domestication center of V. vinifera, and characterize the expression of a range of genes associated with the resistance mechanism. Based on comparative experimental inoculations, confocal microscopy and transcriptomics analyses, our study shows that V. vinifera cv. Mgaloblishvili, native to Georgia (South Caucasus), exhibits unique resistance traits against P. viticola. Its defense response, leading to a limitation of P. viticola growth and sporulation, is determined by the overexpression of genes related to pathogen recognition, the ethylene signaling pathway, synthesis of antimicrobial compounds and enzymes, and the development of structural barriers. The unique resistant traits found in Mgaloblishvili highlight the presence of a rare defense system in V. vinifera against P. viticola which promises fresh opportunities for grapevine genetic improvement.


Assuntos
Resistência à Doença , Peronospora/crescimento & desenvolvimento , Proteínas de Plantas/genética , Vitis/crescimento & desenvolvimento , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Microscopia Confocal , Peronospora/patogenicidade , Locos de Características Quantitativas , Transdução de Sinais , Regulação para Cima , Vitis/classificação , Vitis/genética , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...